POBOTA 3 NNOTOKAMW OAHUX,
PANTEPAMW TA PIJEPAMW

[MutaHHa 5.5.

[TOHATTA NOTOKIB BMBOAY Ta BBOAY AaHUX

write

—_—
application * % % destination
output stream
read
source * x application
input stream

» [1akeT java.io nocTayae pi3Hi Kracu
04 nNoToKiB BBOAY/BUBOAY AAHUX,
NoxigHi Big abCcTpakTHUX KNnacis
OutputStream Ta InputStream.

» Bci Knacu nomokie sugody, Kpim

PrintStream, maromsb cygbikc
OutputStream y Hassi

= Java poa3ni3Hae pi3Hi stream destinations (banTtoBi macueu,
doannu, screens, cokemu Ta kaHanu (thread pipes)).

= Takox Java po3pi3Hse okepena NoToKy (stream sources) —
banToBi macmBu, hannum, KnaeiaTypu, COKETU Ta KaHarnwu.

ByvteArrayOutputStream

FileOutputStream

BufferedOutputStream

Output Stream (abstract)

FilterOutputStream

DataOutputStream

ObjectOutputStream

PrintStream

PipedOutputStream

lepapxifa KnaciB NOTOKY BBoOAY AaHUX

= Knacu LineNumberinputStream Ta

ByteArmravInputStream .
T —— StrlngBufferInputStrgam
FilelnputStrean BBaXarkoTbCA 3aCTapiinmMmun
DatalnputStream = He niaTpmMytoThb pi3Hi KogyBaHHS

CUMBOIIB.
= [x 3amiHsitoTb Knacu LineNumberReader

FilterInputStream

LineNumberlnputStream

, Ta StringReader.
o uda i s = AHanoriyHo knac PrintStream
_ Pastherxinmpnticm 3aMiHsieTbCs Ha PrintWriter, npoTte
HipediopetStcan yepes YacTe BUKOPUCTAHHS NEepLLIOro Y
cTapux Kogax, noro He pobnaTb
SequencelnputStream 3acrapinum.

StringBufferInput Stream

IHWI nakeTn Java nocTtavyaroTb A0AAaTKOBI Kfacu
And NOoToKIB BUBOAY Ta BBOAY

= java.util.zip noctayae 4 knacu gns noToky BMBOAY AaHUX, SIKi CTUCKAOTb HECTUCHEHI

OaHi B pi3Hi popmatu + 4 BigNoBIOHMX Kracu Ans NOTOKY BBOAY AaHUX ANs
PO3MaKOBKM:

» CheckedOutputStream

» CheckedInputStream

= DeflaterOutputStream

= GZIPOutputStream

= GZIPInputStream

» |nflaterinputStream

= ZipOutputStream

= ZiplnputStream

= [TakeT the java.util.jar nocta4ae napu knacis gns podboTr 3 NOTOKOM AaHUX 3 METOH
3anucy/34nTyBaHHA KOHTEHTY JAR-anny:

= JarOutputStream
= JarlnputStream

MeTtoau knacy OutputStream

void close()

void flush()

void write(byte[] b)

void write(byte[] b,
int off, int len)

void write(int b)

Closes this output stream and releases any platform resources associated with the
stream. This method throws I0Exception when an /O error occurs.

Flushes this output stream by writing any buffered output bytes to the destination.
If the intended destination of this output stream is an abstraction provided by the
underlying platform (for example, a file), flushing the stream only guarantees that
bytes previously written to the stream are passed to the underlying platform for
writing; it doesn't guarantee that they’re actually written to a physical device such
as a disk drive. This method throws I0Exception when an |/O error occurs.

Writes b.length bytes from byte array b to this output stream. In general, write(b)
behaves as if you specified write(b, 0, b.length). This method throws
NullPointerException when b is null and I0Exception when an |/O error occurs.

Writes len bytes from byte array b starting at offset off to this output stream.
This method throws NullPointerException when b is null; java.lang.
Index0OutOfBoundsException when off is negative, len is negative, or off + len s
greater than b.length; and I0Exception when an I/O error occurs.

Writes byte b to this output stream. Only the 8 low-order bits are written; the 24
high-order bits are ignored. This method throws I0Exception when an I/O error
oCCurs.

MeTtoau knacy OutputStream

* MeTtog flush() kopucHun y goBroTpnBanux gogartkax, y skux noTpibHO 4OCUTb YacTo
30epiratv 3MiHK: B TUMYaAcOBUI ddani KOXHi KiflbKa XBUJTUH.

= MeTog flush() nuwe nepegae 6antn nnatdopmi; y pesynsrati nnatgopmMa MoXe i He CKMHYTK Ui 6anTun
Ha OWCK.

» MeTtog close() aBTomaTtnyHo oumwae (flush) notik BuBoay.

» HAKWo gogaTok 3akiHdye poboTy Ao BUKNKKY close(), noTik BuBoay AaHux (output stream) aBToMaTnUyHO
3aKpuBaeTbcs, a noro gati is flushed.

MeTtoau InputStream (cynepknacy gns BCix
nigknacie Anga po6oTtu 3 BXiAHUM MOTOKOM AaHUX)

int available()

void close()

void mark(int
readlimit)

boolean
markSupported()

int read()

Returns an estimate of the number of bytes that can be read from this input stream
via the next read() method call (or skipped over via skip()) without blocking the
calling thread. This method throws I0Exception when an I/O error occurs.

It's never correct to use this method’s return value to allocate a buffer for holding all
of the stream'’s data because a subclass might not return the total size of the stream.

Closes this input stream and releases any platform resources associated with the
stream. This method throws I0Exception when an I/O error occurs.

Marks the current position in this input stream. A subsequent call to reset()
repositions this stream to the last marked position so that subsequent read
operations re-read the same bytes. The readlimit argument tells this input stream
to allow that many bytes to be read before invalidating this mark (so that the stream
cannot be reset to the marked position).

Returns true when this input stream supports mark() and reset(); otherwise,
returns false.

Reads and returns (as an int in the range 0 to 255) the next byte from this input
stream, or returns -1 when the end of the stream is reached. This method blocks until
input is available, the end of the stream is detected, or an exception is thrown.

It throws I0Exception when an I/O error occurs.

int read(byte[] b)

int read(byte[] b,
int off, int len)

void reset()

long skip(long n)

Reads some number of bytes from this input stream and stores them in byte array b.
Returns the number of bytes actually read (which might be less than b's length but is
never more than this length), or returns -1 when the end of the stream is reached (no
byte is available to read). This method blocks until input is available, the end of the
stream is detected, or an exception is thrown. It throws NullPointerException when
b is null and I0OException when an I/O error occurs.

Reads no more than len bytes from this input stream and stores them in byte array
b, starting at the offset specified by off. Returns the number of bytes actually read
(which might be less than len but is never more than len), or returns -1 when the
end of the stream is reached (no byte is available to read). This method blocks until
input is available, the end of the stream is detected, or an exception is thrown. It
throws NullPointerException when b is null; IndexOutOfBoundsException when off
is negative, len is negative, or len is greater than b.length - off; and IOException
when an |/O error occurs.

Repositions this input stream to the position at the time mark() was last called. This
method throws I0Exception when this input stream has not been marked or the mark
has been invalidated.

Skips over and discards n bytes of data from this input stream. This method might
skip over some smaller number of bytes (possibly zero), for example, when the end
of the file is reached before n bytes have been skipped. The actual number of bytes
skipped is returned. When n is negative, no bytes are skipped. This method throws
I0Exception when this input stream doesn’t support skipping or when some other
|/O error occurs.

MeTtoau InputStream (cynepknacy gns BCcix nigknacis ans
po60TH 3 BXiAHUM NOTOKOM AaHUX)

» [ligknacu InputStream, 3okpema ByteArraylnputStream, niaTpMmMyroTb NO3HAYEHHS
MOTOYHOI MO3ULiT 34HNTYBaAHHSA Yy BXIOQHOMY MoToLUi AaHKX 3a gonomoroto metoay mark() Ta
Ni3HiLLe NOBEepHEHHS 40 LbOro Micus 3a 4ONoMOoro Metoay reset().

= O6epexHo! He 3abysante Buknukatn markSupported(), wob Bn3HaunTn, Yn NigTpuMye
nigknac metogu mark() ta reset().

Knacu ByteArrayOutputStream Tta ByteArraylnputStream

= banToBi macmBKM YacTo KOPUCHI B AKOCTI Stream destinations Ta sources.
= Knac ByteArrayOutputStream go3sBonse 3anucyBaTt NoTik 6anTis y 6anTtoBnin Macus,
= Knac ByteArraylnputStream gossonsie 3uMtyBaTtu noTik 6anTis 3 0anToBOro Macusy.

= ByteArrayOutputStream orosnoLuye 2 KOHCTPYKTOpPMW.

= ByteArrayOutputStream() cTtBopto€e noTik BUBoAYy Ha 6a3i BHYTPILWHbOro 6aMToBOro Macmuay 3 NOYaTKOBUM
po3mipom 32 6anTn. 3a noTpedn MmacmB PO3POCTAETLCHS.

= ByteArrayOutputStream baos = new ByteArrayOutputStream(); cteoptoe byte array output stream i3 32-6anTHUM
BHYTpIiLWHIM 6aNTOBMM MacuMBOM

= ByteArrayOutputStream(int size) cTBoptoe NoOTik BUBoAY Ha 6a3i BHYTPIiLLHLOro 6anToBOro MacuBy i3 3agaHnUM
pPO3MipOM Ta po3pocTaHHAM 3a noTpebu. Bukuagae lllegalArgumentException, Konm po3mip MEHLLMIA 3a HyIb.

= Konito LbOro MacuBy MOXHa NOBEPHYTU Yy pe3ynbTaTti BUKNUKY metoay byte[] toByteArray() knacy
ByteArrayOutputStream.

KoHcTpykTOpUu ByteArraylnputStream

= ByteArraylnputStream(byte[] ba) ctBoptoe BxigHM NoTik Ha 6a3i banToBOro Macusy, LLO
Hanpamy (6e3 KonitoBaHHSA) BUKOPUCTOBYE MacuB ba.

= 3Ha4yeHH4a position = 0, a KinbkicTb 6anTiB = ba.length.

= ByteArraylnputStream(byte[] ba, int offset, int count) cTBoptoe BXigHUM NOTIK Ha 6a3i
GanToBOro MacumBy, KM Hanpsimy (6es3 KonitoBaHHS) BUKOPMUCTOBYE MacuB ba.
= 3Ha4yeHHs position = offset, a KinbkicTb banTIB AN 34UNTYBaHHA = count.
» TakoX BiACTEXYETHCA HACTYNMHUN GanTn AN 34MTYyBaHHA 3 MAacuBY Ta KifbKICTb BaNTIB Ha YNTaAHHA.

= CTBOPUMO BXigHMI MOTIK Ha 6a3i 6anToOBOro MacuBy, YMiM JXXeperioM € Konisi nonepeagHboro
BUXIiQHOro NOTOKY Ha basi 6anToBOro Macmay.

" ByteArrayInputStream bais = new ByteArrayInputStream (baos.toByteArray()):;

= Knacu ByteArrayOutputStream T1a ByteArraylnputStream KOpWUCHI onsa BUNaaky, Kosim NoTpidHO
KOHBEPTYBaTN 3006paxXeHHA B MacmB 6banTiB, 06podbunTn ix 3a 4eSKMM anropmMtMom Ta
CKOHBEPTYBATWU IX Ha3ad B 300pakeHHs.

Npuknaa

» Hanpuknag, B gogatky anst Android 3 o6po0bkun 306paxkeHb

dann i3 306paxeHHAM gekoayeTbes y cneundivHni ans uiei OC ek3emnnsap knacy
android.graphics.BitMap.

OTpumaHuin ek3eMnnisip CTUCKAETbCSA B ek3emnnap knacy ByteArrayOutputStream

OpepxyeTbea konis 6anToBOro Macuey 3 NOTOKY BUBOAY,

Llen macue 0b6pobnaeTbca 3a 4ONOMOroH anropmuTmis,

Pe3ynbTyounin MacmB KOHBEPTYETLCA B ek3emnnap ByteArraylnputStream,

BukopuctoByeTbcs byte array input stream ans gekogyBaHHS Lmx 6anTiB B iHWKIM ek3emnngap BitMap

String pathname = ...; // Assume a legitimate pathname to an image.
Bitmap bm = BitmapFactory.decodeFile(pathname);

ByteArrayOutputStream baos = new ByteArrayOutputStream();
if (bm.compress(Bitmap.CompressFormat.PNG, 100, baos))

{
byte[] imageBytes = baos.toByteArray();
// Do something with imageBytes.

bm = BitMapFactory.decodeStream(new ByteArrayInputStream(imageBytes));

Knacu FileOutputStream Ta FilelnputStream

» KoHkpeTHMn knac FileOutputStream gossonge 3anucyBaTtu NoTik 6anTie y doann; FilelnputStream
— 34MTyBaTKU MUOro 3 panny.

» FileOutputStream cybknacye OutputStream Ta orofiowlye 5 KOHCTPYKTOPIB A9 CTBOPEHHSA MOTOKIB
dbannoBOro BMBOLY.

= Hanpuknag, FileOutputStream(String name) cTBOpto€ NoTik haiiioBoro B1BoAy AN iCHyto4oro caiiny, wo
BM3HA4YaeTbCs NapaMeTpoM name. BiH nepesanncye icHytounn dpann (Ko noTpidbHo gonmMcyBaTh, BUKOPUCTOBYIOTb
KOHCTPYKTOpP 3 napamMeTpom append).

= KoHcTpykTop Buknaae FileNotFoundException, konu ain He icHye Ta He MoXe OyTu CTBOpeHUM; Lie nanka, a He
HOpManbHUK bann; iCHYTb iHLWWI NPUYUHK, YOMY dain He MOXe OyTu BIOKPUTUM ANt BUBOAY.

» FileOutputStream fos = new FileOutputStream("employee.dat");

= FilelnputStream cybknacye InputStream Ta oronowye 3 KOHCTPYKTOPU AN CTBOPEHHSA MOTOKIB
JbannoBOro BBOAY.

» Hanpwuknag, FilelnputStream(String name) cTBoproe NoTik oanyioBoro BBoAY 3 iCHyHOHOro ¢panny 3a Noro HasBoko.
» KoHcTtpykTop Bukuaae FileNotFoundException 3 Tux e npuduH, wo n FileOutputStream().
» FilelnputStream fis = new FilelnputStream("employee.dat");

» FileOutputStream Ta FilelnputStream KOpUCHI B KOHTEKCTi KonitoBaHHS dhainnis.

import java.io.FileInputStream;

import java.io.FileNotFoundException; Kon i HOBAHHA SO urce Fl I eB
import java.io.FileQutputStream; . . .
import java.io.IOException; DeStl N atl on Fl I e
public class Copy
{ * L] L] # #
pubitic static vold wain(Stringl] =xgs) = MeTog main() cnoyaTky nepesipsie, Wob 2 apryMeHTH
if (args.length != 2) KOMaHOHOro psigka (Hassum source Ta destination doannis)
.[.
System.err.println("usage: java Copy srcfile dstfile"); 6yﬂ|/| 3afaH|.
return; = [loTim iHcTaHuitoTbea FilelnputStream Ta FileOutputStream i
Eﬂﬂnputstmam fic - mull- BXOAUMO B LMKN while, Sku NOBTOPHO 34nTye BanTn 3 NOTOKY
FileOutputStrean fos = null; dannoBoro BBoay Ta 3anucye ix y notik hannosoro BMBoay.
try
{
fis = new FileInputStream(args[o]);

fos = new FileQutputStream(args[1]); _

int b; // I chose b instead of byte because byte is a reserved word. LLlocb MoXe niTu He TaK.

while ((b = fis.read()) != -1) - source file Moxe He icHyBaTK

fos.write(b); g -

} o destination file byae HEMOXNMBO CTBOPUTK (Hanpuknag, Bxe
catch (FileNotFoundException fnfe) MOXe icHyBaTu read-only doann 3 Takow 3 Ha3BOHO).
{ o BuknHeTbca BuHATOK FileNotFoundException, akun

System.err.println(args[o] + " could not be opened for input, o1 "ot NoTPiGHO 06pPOBUTM.

args[1] + " could not be created for output”);

iatch (I0Exception ioe) [HWIi MOXNKMBICTL — NOMUINKa BBO4Y-BMBOAY B Mpoueci
{ KOMitOBaHHS.

System.err.println("I/0 error:

}

+ ioe.getMessage()); o Y pesynbrati — IOEXception.

%inally
{ = He3ane)xHo Big NOSABN BUKITHOYEHHS, MOTOKU
- - I_ . . . -
if (fis 1= null) BBOZY i BMBOAY NOTPIGHO 3aKkpuTy B Gnoui finally

try
{ :
fis.close(); = Y nNpoCcTuUX gogaTkax MOXHa irHopyBaTu BUKIUKK
} meToay close() i 4O3BONUTU NepepuBaHH4A
afatch (IOException ioe) BMKOHaHHS 4oaaTkKy.
assert false; // shouldn't happen in this context = Xo4 Java aBTOMaTV4HO 3akpuBae BiAKpUTI havnu,
} XOPOLLOK MPaKTUKOK € ABHE 3aKpuUTTA hannis y

npoLeci Bnuxoay.

= Ockinbku close() 3agaTHUN BUKMOATN €K3EeMMNNAP
checked-BukrnoveHHsa knacy IOException, BUKNKUK LbOro
MeToay obropTaeTbca B 6nok try-catch.

if (fos != null)
try
{

}

fos.close();

catch (IOException ioe) = 3BEpHITb yBary Ha onepatopu if, Wo nepenyroTb
{ KOXXHOMY OnOKYy try.

assert false; // shouldn't happen in this context - ; -
} = Llen onepaTtop 0OOB’A3KOBUN AN TOro, LWob yHMKaTH

} BuknaaHHs exksemnnapy NullPointerException.

Knacu PipedOutputStream Tta PipedinputStream

» YacTo notokam noTpibHa KoMyHiKaL,is.
» OauH 3 nigxopis — cninbHi (shared) 3amiHHI.
" |HWWA — BUKOPUCTAHHS KOHBEEPHMX NOTOKIB (piped streams).

= Knac PipedOutputStream gossonse Bignpasnaiodomy notoky (thread) sanucysatu norik (stream) 6ainTis B
eksemnnaAp knacy PipedinputStream, Akuii OTpUMYOYMIA NOTIK BUKOPUCTOBYE AN NOCMIAOBHOIO 34MTyBaHHS
LUmx 6aunTiB.

= Ob6epexHo! Cnpoba BmkopucToByBaTtn 0b’ekTn PipedOutputStream Ta PipedinputStream B pamkax oQHOro
NOTOKY HE PEKOMEHAYETLCSH, OCKISTIbKM L€ MOXe BMKNUKATN B3aEMOONOKYBaHHS.

= KoHcTpykTopu PipedOutputStream:

= PipedQutputStream() cTBOptOE KOHBEEPHMI NOTIK BUBOAY, O Le He Nif'eaHaHMn 40 KOHBEEPHOO MOTOKY
BBoay. I'lig’eagHaHHA NOBMHHO BiabyTUCh abo oTpumyBadvemM, abo BignpaBHUKOM nepen BUKOPUCTAHHSAM.

» PipedOutputStream(PipedInputStream dest) cTBOpto€ KOHBEEPHUIM NOTIK BMBOAY, LLO Mig’eaHaHnn 0o
KOHBEEPHOro NoToky BBoay dest. 3anncaHi B KOHBEEPHUI MOTIK BUBOAY 6anTn MoxHa 34nTtaTth 3 dest. Bukngae
|IOEXxception, konun BuHukae 1/O error.

* PipedOutputStream oronowuye metog void connect(PipedinputStream dest), akui nig'egHye
Len rnoTik BuBoay Ao dest.

» MeTog Bukngae IOException, sIKLLO Len NOTIK yxKe Nig’eaHaHun OO iHWOro KOHBEEPHOro NOTOKY BBOAY.

KoHcTpyKkTOpKM PipedinputStream

» PipedInputStream() cTBOptOE KOHBEEPHWNI MOTIK BBOAY, SKUW L He Nig eqHaHnW 0O KOHBEEPHOIO
NoTOKY BMBOAY. [1oBMHEH Nig'eqHyBaTUCL 4O NOTOKY BUBOAY Nepen BUKOPUCTaAHHSAM.

» PipedIinputStream(int pipeSize) cTBOptOE KOHBEEPHUIN MOTIK BBOAY, AKUM LLe He Mnig’ egHaHun 0o
KOHBEEPHOro MNOTOKY BMBOAY Ta BUKOPUCTOBYE pipeSize, wob Bu3HavyaTtn po3mip bydepy notoky
BBOAY.

» [loBWHEH Nig’egHyBaTUCh A0 NMOTOKY BUBOAY Nepes BUKOPUCTAHHAM.
» Bukupgae lllegalArgumentException, konu pipeSize <= 0.

: PlpedInputStream(PlpedOutputStream SIc) CTBOPHOE KOHBEEPHUU MOTIK BBOAY, KN
nig eqHaHMW OO KOHBEEPHOrO NMOTOKY BUBOAY SIC.
= 3anucadi B src 6antn MoOXKHa 34MTaTn 3 LbOro noToKy BUBOAY.
» Buknpae IOException npu nossi I/O error.

: PlpedInputStream(PlpedOutputStream src, int pipeSize) cTBOpHOE KOHBEEPHMIN NOTIK BBOAY,
AKUA Nig’e0HaHMK 00 KOHBEEPHOIO NOTOKY BMBOAY SIC Ta BUKOPUCTOBYE pipeSize, Wwob BM3Ha4YaTy

po3mMip bydoepy nNoToky BBOAY.
= Bytes written to src can be read from this piped input stream.
» Buknpae IOException (I/0O error) Ta lllegalArgumentException (pipeSize <= 0).

* PipedinputStream oronowye metog void connect(PipedOutputStream src), Wwo nig'egHye uen
KOHBEEPHUIN MOTIK BBOAY OO SrC.

» Bukmpae IOException, SKLWO gaHUK NOTIK BBOAY BXe Nig’e4HaHMN A0 iHWOro NoToKy BUBOAY.

» HanmnpocTiwmnny crnocid cTBOpUTM Napy KOHBEEPHNX NMOTOKIB — B 0A4HOMY noToui. Hanpuknag

= PipedOutputStream pos = new PipedOutputStream() ;
PipedInputStream pis = new PipedInputStream (pos) ;

abo

= PipedInputStream pis = new PipedInputStream() ;
PipedOutputStream pos = new PipedOutputStream (pis) ;

MoxHa 3anumwntn obruasa NoTokM po3’egHaHumm (unconnected) i 3pobuTK e Ni3Hile 3a 40MOMOroK AOPEYHOro
MeTo4Yy KOHBEEPHOro NoToky connect():

= PipedOutputStream pos = new PipedOutputStream() ;
PipedInputStream pis = new PipedInputStream() ;
//

pos.connect (pis) ;

import java.io.IOException; KOH BeCle3a|J,i;| BM na,qKO Bo

import java.io.PipedInputStream;

import java.io.PipedOutputStream; 3reHepo BAdHUNNX 6a ﬁTi B3 Sen d er
Eublic class PipedStreamsDemo Th read y Recelver Th read

public static void main(String[] args) throws IOException

{

final PipedOutputStream pos = new PipedOutputStream();

final PipedInputStream pis = new PipedInputStream(pos); - MeTO,D, ma|n() CTBOpl_Oe MOTOKU KOHBeepHOFO

Runnable senderTask = new Runnable()

{ BMBOAY Ta BBOAY, SKi OyayThb
final static int LIMIT = 10; BMKOpMCTOByBaTMCb
@0verride * noTokoM senderTask ansa nepegadi nocnigoBHOCTI
‘{’“bhc v mung) BMMaZKOBO 3reHepoBaHux byte integers
;ry " MOTOKOM recei_verTask ANa OTPUMaHHS uiel
for (int 1 = 0 ; i < LIMIT; i++) NOCHIAOBHOCTI.

pos.write((byte) (Math.random() * 256));

catch (I0Exception ioe) = MeTtopa run() BignpaBHMKA ABHO 3aKpuBaE CBIl

{ KOHBEEPHUIN MOTIK NICNA 3aBepLUEHHS
ioe.printStackT 0); e

), toesREmDek el BiANpaBKM AaHMX.

?“ally = FKLIO LbOro He 3pobuTK, Byae BUKMHYTO eK3eMMnsp
try |OEXxception 3 nosigomneHHaM “write end dead”, konu
{ NpUMMaroymMin NOTIK BUKOHAHHA BUKNnkatume read()
; pos.close(); BOCTaHHE.
catch (IOException ioe)
{

ioe.printStackTrace();

}

}

}
 H

Runnable receiverTask = new Runnable()

{

@0verride

E{:-ublic void run() Pe3yn bTAdTN BUA Bony

try

{
int b;
while ((b = pis.read()) != -1)
System.out.println(b);

}
catch (IOException ioe)
; 93
ioe.printStackTrace(); 23
}
finally 125
{
try Eﬂ
{
pis.close(); 126
} 131
catch (IOException ioe)
‘ 210
ioe.printStackTrace(); :.!g
}
} 150
}
b 91

Thread sender = new Thread(senderTask);
Thread receiver = new Thread(receiverTask);
sender.start();

receiver.start();

Knacwu FilterOutputStream Ta FilterlnputStream

= bainTosi (Byte array), panrnoBi Ta KOHBEEPHI MOTOKM NepenatoTb 6anTn unchanged to their
destinations.
= Java Takox nigrpumye instpoBaHi notoku (filter streams), siki 6ydepunaytoTb, CTUCKAOTL/PO3NaKoBYOTh,

lndppytoTe/aewmndpyoTb Ta BUKOHYIOTb iHLWI MaHinynsuil 3 6anTtoBo NOcnigoBHICTIO NOTOKY (that is input to
the filter) oo pocarHeHHs destination noToky.

= dinbTpoBaHunK NoTik BuBoAay (filter output stream) 6epe nepenaxi B noro metoam write()
(input stream) gaHi, QinNsTpye IX Ta 3anncye BiadinsTpoBaHNW pesynsTar y BignoBigHUN
NOTIK BUBOAY,

= [lOoTOKOM BMBOLY MOXe BUCTYNaTu AK iHWNK (PinbTpoBaHUK NOTIK BUBOAY, TakK i destination output stream,
30Kpema hannosui NOTIK BUBOAY.

» QinbLTpoBaHi NOTOKM BUBOAY CTBOPKOKOTLCA 3 MifKraciB KOHKpeTHoro knacy FilterOutputStream - nigknacy
OutputStream.

» FilterOutputStream oronowye egunHnn KOHCTpykTop FilterOutputStream(OutputStream out), Ssknin CTBOPHOE
dinbTpOBaHUM NMOTIK BUBOAY NoBepx out — underlying output stream.

CkpemOniHr (Scrambling) notoky 6auTiB

import java.io.FilterQutputStream;
import java.io.IOException;
import java.io.OutputStream;

public class ScrambledOutputStream extends FilterOutputStream
{

private int[] map;

public ScrambledOutputStream(OutputStream out, int[] map)
{
super(out);
if (map == null)
throw new NullPointerException(“"map is null");
if (map.length != 256)
throw new IllegalArgumentException(“"map.length 1= 256");
this.map = map;

}

@0verride
public void write(int b) throws IOException
{
out.write(map[b]);
}
}

CkpemOnioBaHHA — LUINGPYBaHHA MOTOKY AaHUX,
B pe3ynbraTi Kol BiH BUrNSi4ae [k NoTik
BUnagkoBux OiTislLl.

CybknacysaTu FilterOutputStream npocTo.

MiHiMyM, oronoLuyeTe KOHCTPYKTOP, SIKUA nepeaae CBin
aprymeHT tuny OutputStream B KOHCTPYKTOP Kfacy
FilterOutputStream Ta nepeo3Havae metog write(int) 3
FilterOutputStream.

Knac ScrambledOutputStream BUKOHYE npocTe
LUMdppyBaHHSA CBOro NOTOKY BBOAY 3@ A0OMOMOro
CKpembniHry 6anTiB BXiAHOrO NOTOKY AaHUX Yepes
remapping-onepadito.

[1aHMN KOHCTPYKTOP NpUUMaE napy aprymMmeHTIB:

out — BU3Hayae noTiKk BUBOAY, B KU 3aNUCYOTbCH
CKpembrnboBaHi 6anTu.

map — BM3Ha4ae macue 3 256 byte-integer 3Ha4YeHb, Y SKi
BigoOpaxkaeTbCs BXigHMI NOTIK AaHUX.

https://uk.wikipedia.org/wiki/%D0%A1%D0%BA%D1%80%D0%B5%D0%BC%D0%B1%D0%BB%D1%8E%D0%B2%D0%B0%D0%BD%D0%BD%D1%8F#cite_note-1

import java.io.FileInputStream;

import java.io.FileOutputStream; C erM6n FOBAHHA 6a ﬁTi B

import java.io.IOException;

import java.util.Random;

danny

public class Scramble

{ » Metoa main() cnovyaTky BU3HaYaEe KinbKiCTb
public static void main(String[] args) apryMGHTiB KOMaHOHOro paaka:.
{ if (args.length != 2) = 1) BU3Ha4ae source path danny 3 HeckpambrnboBaHUM
{ KOHTEHTOM;,
System.err.println("usage: java Scramble srcpath destpath®™); = 2)BusHauyae destination path daiiny, o 36epirae
} return; CKpambribOBaHWIA KOHTEHT.
FileInputStream fis = null; -
ScrambledOutputStream sos = null; = Hexaun BBeAEHO 2 dpryMmeHTn KOoMmaHaHoOro pdagka.
try = Y metoai main() iHcTaHuitoeTbea FilelnputStream, Taknm
{ . ‘ YMHOM CTBOPKETBLCA NOTIK panyioBOro BBOAY,
fis = new FileInputStream(args[0]); npueaHaHWn 0o BU3HadveHoro B args[0] dpanny.
FileQutputStream fos = new FileOutputStream(args[1]); B} : : . : i
sos = new ScrambledOutputStream(fos, makeMap()); -D-ar_” mal[l() IHCTaHUjto€ FI eOutputStvream, CTBOPHOHOYM
int b; NoTik hannoBoro BBoAy, NpUeaHaHNn 4o danny,
while ((b = fis.read()) != -1) BM3HayeHoro B args[1].
sos.write(b); = [ToTim cTBOpIOETLCA ek3emnnsap ScrambledOutputStream
} o Ta B MOro KOHCTPYKTOP nepenaeTbca 06’ekT knacy
catch (IOException ioe) FileOutputStream.
{

ioe.printStackTrace();

}

}

finally

{
if (fis != null)
try

fis.close();

}

catch (IOException ioe)

{

ioe.printStackTrace();
}
if (sos != null)
try
{
sos.close();
}
catch (IOException ioe)
{
ioe.printStackTrace();
}
}

static int[] makeMap()

{

int[] map = new int[256];
for (int 1 = 0; 1 < map.length; i++)
map[i] = 1i;
// Shuffle map.
Random r = new Random(0);
for (int 1 = 0; 1 < map.length; i++)
{
int n = r.nextInt(map.length);
int temp = map[i];
map[i] = map[n];
map[n] = temp;
}

return map;

3ayBaxTe! Konu ekseMnnsap NOTOKy nepefaeTbCa B KOHCTPYKTOP iHLLOTO
MNOTOKY, BOHU 3’€AHYyIOTbCA (Chain together).

Tenep main() BXxoauTb y umkn, 34ntyroum 6antm reading bytes from the file
iInput stream and writing them to the scrambled output stream by calling
ScrambledOutputStream’s write(int) method.

» This loop continues until FilelnputStream’s read() method returns -1 (end of file).

The finally block closes the file input stream and scrambled output stream
by calling their close()
methods.

» |t doesn’t call the file output stream’s close() method because FilterOutputStream
automatically calls the underlying output stream’s close() method.

Metog makeMap() Bignosigae 3a cTBopeHHd the map array that’s passed
to ScrambledOutputStream’s constructor.

» The idea is to populate the array with all 256 byte-integer
values, storing them in random order.

= 3ayBaxTe! A nepepnato 0 B SIKOCTi 3epHa reHepatopa NBY npu ctBopeHHi 00’ekTy
java.util.Random, wob noBepHyY TN MPOrHO30BaHy MOCNi4OBHICTL BUNAOKOBUX YMCE.

= Taka nocnigoBHICTb MOTpiGHa Npu CTBOPEHHI AOMNOBHIOKOYMOro map array B Unscramble application.
= Unscrambling He npautoBaTume 6e3 Tiel X NoCcnigoBHOCTI YMcen.

= Bisbmemo npoctum 15-6antHuin doann hello.txt, wo mictutb “Hello, World!”, 3a akum ige
nepexig Ha HoBuu psagok followed by a carriage return and a line feed).

= java Scramble hello.txt hello.out

7

B C\Windows\system32\cmd .exe =

C:nprjideviljfad2h\chiiscode\Scramble>java Scranble hello.txt hello.out
C:\prj\deu\li%adZ\chll\code\Scranble)type hello.out

~gupiy4 impldiT

C:\prj\deviljfad2\chiircode\Scranble>notepad hello.out

C:\prj\devi]ljfad2\chiicode\Scranmhle>

File Edit Format View Help

IPgeaE; 1 Ep2] 20

= ®inbTpoBaHuK noTik BBoay (filter input stream) 6epe gaxi 3 underlying input stream (iHWWA
dinsTpOBaHMK NMOTIK BBOAY abo source input stream, 3okpema dpannosunn noTik BBoAY),
dineTpye ix Ta pobutb AOCTYNHUMK 3a AornomMoroto metoais read() (MOToKy BnBoAY).

» QinbLTpoBaHi NOTOKM BBOAY CTBOPHOKOTLCA 3 NigKnaciB KOHKpPeTHOro knacy FilterinputStream — nigknacy
InputStream.

= FilterInputStream oronowuye ogmH KOHCTpyKTOp FilterinputStream(InputStream in), Skin
CTBOPHOE (PiNLTPOBaHUM MOTIK BBOAY, NodyaoBaHMii Ha 6asi in - underlying input stream.

= HAK MiHIMYM, OronoLyeTbCA KOHCTPYKTOP, B AKUW NepenaeTbca aprymeHT Tuny InputStream, a takox
nepeo3HavatoTbcd metoam read() Ta read(byte[], int, int) knacy FilterinputStream.

import java.io.FilterInputStream;
import java.io.InputStream;
import java.io.IOException;

public class ScrambledInputStream extends FilterInputStream Unscrambllnq a Stream

—_—

public ScrambledInputStream(InputStream in, int[] map)
{
super(in);
if (map == null)
throw new NullPointerException("map is null");
if (map.length != 256)
throw new IllegalArgumentException(“"map.length != 256");
this.map = map;

}
|

@0verride
public int read() throws IOException
{

int value = in.read();

return (value == -1) ? -1 : map[value];
}
@0verride n
public int read(byte[] b, int off, int len) throws IOException
{

int nBytes = in.read(b, off, len);
if (nBytes <= 0)
return nBytes;
for (int i = 0; 1 < nBytes; i++)
bloff + i] = (byte) map[off + i];
return nBytes;

private int[] map; Of Bytes

Knac ScrambledInputStream BukoHye
performs trivial decryption on its
underlying input stream by
unscrambling the underlying input
stream’s scrambled bytes via a
remapping operation.

Metog _read() cno4artky 34nTye
CKpamMbnboBaHum 6ant fromits
underlying input stream.

» Akwo nosepTaeTbes -1 (KiHeub hanny),
this value is returned to its caller.

= |Hakwe, 6anT Bigobpa)kaeTbes to its
unscrambled value, which is returned.

Metopa read(byte[], int, int) nogidbHWM
po read(), npote 3bepirae bantu,
34nTaHi 3 underlying input stream in a
byte array, taking an offset into this
array and a length (number of bytes
to read) into account.

= OTXe, -1 MoXe noBepTaTnCb 3 BUKINKNKY underlying metoay read().
. HKLLLO Tak, 3Ha4eHHA NMOBNHHO NMOBEPTATUCD.

= |HaKLwwe, KoXXeH 6anT macuBy BigobpaxkaeTbcs to its unscrambled value, and the number of bytes read
IS returned.

= Note [lyxe Baxnmo nepeo3Ha4yntn metogm read() i read(bytel], int, int), Tomy wo
FilterinputStream’s read(byte[]) method is implemented via the latter method.
* HacTynHuiM NiCTUHr Nokasye BUXiaHuM kog goaatky Unscramble anga experimenting with

ScrambledInputStream by unscrambling a source file’s bytes and writing these unscrambled bytes to a
destination file.

import java.io.FileInputStream;
import java.io.FileQutputStream;
import java.io.IOException;

import java.util.Random;

public class Unscramble

{
public static void main(String[] args)
{
if (args.length != 2)
{
System.err.println(“usage: java Unscramble srcpath destpath”);
return;
}

ScrambledInputStream sis = null;

FileOQutputStream fos = null;

try

{
FileInputStream fis = new FileInputStream(args[0]);
sis = new ScrambledInputStream(fis, makeMap());

fos = new FileQutputStream(args[1]);
int b;
while ((b = sis.read()) != -1)
fos.write(b);
}
catch (IOException ioe)
{

ioe.printStackTrace();

}

Unscrambling a File’s

Bytes

finally
{
if (sis != null)
try
{
sis.close();
}
catch (IOException ioe)
{
ioe.printStackTrace();
}
if (fos != null)
try
{
fos.close();
}
catch (IOException ioe)
{
ioe.printStackTrace();
}

static int[] makeMap()

{

int[] map = new int[256];

for (int i = 0; 1 < map.length; i++)
map[i] = i;

// Shuffle map.

Random r = new Random(0);

for (int i = 0; 1 < map.length; i++)

{
int n = r.nextInt(map.length);
int temp = map[i];
map[i] = map[n];
map[n] = temp;

}

int[] temp = new int[256];

for (int i = 0; i < temp.length; i++)
temp[map[i]] = i;

return temp;

= Metog main() cno4aTKy nepesipse KiNnbKiCTb
aprymeHTiB KOMaHOHOro psaka:

= 1) source path of the file with scrambled content;

= destination path of the file that stores
unscrambled content.

= BBaxatrouu, Wo BBEOEHO 2 apryMeHTu
KOMaHOHOro paaka, main() iHcTaHuitoe
FilelnputStream, ctBoproroum doannosum
NOTiK BBOAY, Nig eaHaHnn Oo danny,
B1U3Ha4yeHoro B args[l].
= [ani main() iHcTaHuitoe FilelnputStream,

CTBOPIOKOYM dhannoBuin NOTIK BBOAY, Nid’ €aHAHUN
no danny 3 args[O].

= [lotim icTaHujtoeTbca ScrambledinputStream, and
passes the FilelnputStream instance to
ScrambledInputStream’s constructor.

= Note When a stream instance is passed to another stream class’s constructor, the two
streams are chained together.

= For example, the scrambled input stream is chained to the file input stream.

= main() now enters a loop, reading bytes from the scrambled input stream and writing them to the file output
stream.

= This loop continues until ScrambledInputStream’s read() method returns -1 (end of file).
= The finally block closes the scrambled input stream and file output stream by calling their close() methods.

» |t doesn’t call the file input stream’s close() method because FilterOutputStream automatically calls the
underlying input stream’s close() method.

» Metoa makeMap() method is responsible for creating the map array that's passed to
ScrambledlnputStream’s constructor.
» The idea is to duplicate Listing 11-14’s map array and then invert it so that unscrambling can be performed.

= Continuing from the previous hello.txt/hello.out example, execute java Unscramble hello.out hello.bak and
you'll see the same unscrambled content in hello.bak that’s present in hello.txt.

Knacu BufferedOutputStream Ta BufferedinputStream

» FileOutputStream and FilelnputStream matoTb npobnemy
NPO4YKTUBHOCTI.

= KoxeH BMKIMK meTtoay write() ans dpannosoro NnoToky BuBoay Ta metoay read() ans
dranoBoro NOTOKY BBOAY NPU3BOLAUTL A0 BUKITMKY OOHOMO 3 HATUBHUX METO/IB
underlying nnarcgopmu,

* Lli HaTKMBHI BUKNNKK CNOBINbHIOWTL 1/O.

= Note HaTtuBHuin (native) memod — ¢pyHKuiss APl 6a3oeoi nnamagopmu, siKy
Java nigkntodae 0o gogatky 3a gonomoroto Java Native Interface (JNI).
» Java nocradvae 3apesepBoBaHe CroBo native, wob igeHTndikyBaTtu HaTUBHUA METOS,
» Hanpuknag, knac RandomAccessFile oronowye metop,
private native void open(String name, int mode) method.

» Konun koHcTpykTop RandomAccessFile Buknukae uen metoa, Java 3BepTaeTbCs 40
6asosol nnargopmn (Yepes JNI) Woao BIAKPUTTA 3a4aHOro hanny B 3afaHoOMy peXUMI
on Java’s behalf.

= KoHkpeTHi knacu BufferedOutputStream Ta BufferedInputStream
(piNbLTPOBaAHOIO NOTOKY MOKPAaLLYOTb NPOAYKTUBHICTb, MiHIMI3youm
BUKNUKK MeToaiB underlying output stream write() and underlying input
stream read().

= 3amicTb HMX Java bepe o yBaru bydepw.

= Konwn 6ydep ans sanucy nosHumn, write() Buknunkae underlying metog, write() noTOKy
BMBOLY, o6 ounctutn dydpep. HacTynHi Buknnkn metoais write() 3
BufferedOutputStream 30epiratoTb 6anTn B Bydep 40 HACTYNMHOro NePEenoOBHEHHS.

= Konu Oydpep Ana 34MTyBaHHA NOPOXHIN, BUKNUKK read() BeayTb Ao underlying metogy
read() noToKy BBOAY AJ1S 3aMNOBHEHHS Bydepy. HacTynHi BUKINKN LUX MeToaiB
nosepTarTb 6anTn 3 bydpepy, NOKM BiH 3HOBY HE CTaHE NMOPOXKHIM.

» KoHcTpykTOopu BufferedOutputStream:

= BufferedOutputStream(OutputStream out) creates a buffered output stream that
streams its output to out. An internal buffer is created to store bytes written to out.

= BufferedOutputStream(OutputStream out, int size) creates a buffered output
stream that streams its output to out. An internal buffer of length size is created

to store bytes written to out.

* Y HacTynHOMY npuknagi noeaHaemo eksemnndap BufferedOutputStream 3
eksemnndapom FileOutputStream.

= BianosigHi BUKIIMKM MeToay write() Ansa ek3emnnspy Buff_eredOutﬁutStream
6yﬁ)epv|3y+0Tb 6anTn Ta Yac Big yacy result in internal write() method calls on the
encapsulated FileOutputStream instance.

\FileOutputStream fos = new FileOutputStream(“employee.dat");
\BufferedOutputStream bos = new BufferedOutputStream(fos); // Chain bos to fos.
‘bos.write(0); // Write to employee.dat through the buffer.

// Additional write() method calls.

bos.close(); // This method call internally calls fos's close() method.

» KoHcTpykTOopu BufferedinputStream:

= BufferedinputStream(InputStream in) creates a buffered in?ut stream that streams its
input from in. An internal buffer is created to store bytes read from in.

= BufferedInputStream(InputStream in, int size) creates a buffered input stream that
fstrea_ms its input from in. An internal buffer of length size is created to store bytes read
rom in.

» HactynHun npuknag noeanye eksemnndap BufferedinputStream go
ek3emnnsapy FilelnputStream.
= Subsequent read() method calls on the BufferedInputStream instance unbuffer

bytes and occasionally result in internal read() method calls on the encapsulated
FileInputStream instance.

FileInputStream fis = new FileInputStream("employee.dat");
BufferedInputStream bis = new BufferedInputStream(fis); // Chain bis to fis.
int ch = bis.read(); // Read employee.dat through the buffer.

// Additional read() method calls.

bis.close(); // This method call internally calls fis's close() method.

Knacu DataOutputStream Tta DatalnputStream

= FileOutputStream i FilelnputStream kopucHi 4nsa 3anucy Ta 34MTyBaHHSA
b6anTiB Ta macuBiB 6anTiB.

» [lpoTe BOHM HE NocTayaloTb NIATPUMKM AN 3anuUCy/34MTyBaHHA NPUMITUBHUX TUMIB
AaHUX Ta PAOKIB.

» 3 uieto MeToro Java nocrtadae KoHKpeTHi knacu DataOutputStream ta DatalnputStream
QiNbTPOBAHOIrO MOTOKY.

= KoxeH 3 HMUX Jonae ue obMexXeHHs, moctavaoym MeToam And 3anncy um
34MTYBaHHS NPUMITUBHUX 3HAYEHb Ta pPAAKIB Y NnaTtopmMo3anexHoMy
cTunl.

= Llini yncna 3anucytotecsa/34nTyoTbes B big-endian format (the most significant byte
comes first).

= http://en.wikipedia.org/wiki/Endianness

» Floating-point i double precision floating-point values are written and read according to
the IEEE 754 standard, which specifies 4 bytes per floating-point value and 8 bytes per
double precision floating-point value.

= Strings are written and read according to a modified version of UTF-8, a variable-length
encoding standard for efficiently storing 2-byte Unicode characters.

= http://en.wikipedia.org/wiki/Utf-8

http://en.wikipedia.org/wiki/Endianness
http://en.wikipedia.org/wiki/Utf-8

= DataOutputStream declares a single DataOutputStream(OutputStream
out) constructor.

= Because this class implements the DataOutput interface, DataOutputStream also
provides access to the samenamed write methods as provided by
RandomAccessFile.

= DatalnputStream declares a single DatalnputStream(InputStream in)
constructor.

= Because this class implements the Datalnput interface, DatalnputStream also
provides access to the samenamed read methods as provided by
RandomAccessFile.

* HacTynHuu NICTUHr Nnokaaye kog goaartky DataStreamsDemo, akum
BUKOpUCTOBYE ek3emnndap DataOutputStream gna 3anucy
MynbTMOaNTOBUX 3HaYeHb B ek3zemnnsap FileOutputStream Ta
BUKOpUcToBYe instance and uses a DatalnputStream instance to read
multibyte values from a FileInputStream instance.

import java.io.DatalnputStream;
import java.io.DataOutputStream;
import java.io.FileInputStream;

%mpnrt java.%ﬂ.File{)utpl:ltStream; Outputtlng and Th en
import java.io.IOException; .
, Inputting_a Stream of
= public class DataStreamsDemo

(Multibyte Values

final static String FILENAME = "values.dat";

public static void main(String[] args)
{

DataOutputStream dos = null;

DataInputStream dis = null;

try

{
FileQutputStream fos = new FileQOutputStream(FILENAME);
dos = new DataOutputStream(fos);
dos.writeInt(1995);
dos.writeUTF("Saving this String in modified UTF-8 format!");
dos.writeFloat(1.0F);
dos.close(); // Close underlying file output stream.
// The following null assignment prevents another close attempt on
// dos (which is now closed) should IOException be thrown from
// subsequent method calls.
dos = null;
FileInputStream fis = new FileInputStream(FILENAME);
dis = new DatalnputStream(fis);
System.out.println(dis.readInt());
System.out.println(dis.readUTF());
System.out.println(dis.readFloat());

}

catch (IOException ioe)

{
}

System.err.println("I/0 error: " + ioe.getMessage());

}

}

finally

{
if (dos !'= null)
try
{
dos.close();
}
catch (IOException ioe2) // Cannot redeclare local variable ioe.
{
assert false; // shouldn't happen in this context
}
if (dis !'= null)
try
{
dis.close();
}
catch (IOException ioe2) // Cannot redeclare local variable ioe.
{
assert false; // shouldn't happen in this context
}
}

= DataStreamsDemo ctBoptoe daiin values.dat; calls DataOutputStream
methods to write an integer, a string, and a floating-point value to this file;
and calls DatalnputStream methods to read back these values.

= Unsurprisingly, it generates the following output:

1995
Saving this String in modified UTF-8 format!
1.0

= Caution lNpu 34nTyBaHHI 3Ha4YeHb 3 oaunny, 3anncaHux 3 NOCnigOBHOCTI
DataOutputStream method calls, make sure to use the same method-
call sequence.
= Otherwise, you're bound to end up with erroneous data and, in the case of the

readUTF() methods, thrown instances of the java.io.UTFDataFormatException class
(a subclass of IOException).

Cepianisauia Ta gecepiarnisauia o0’ekTy

= Java noctadvae knacu DataOutputStream Ta DatalnputStream 3 MeToto
NOTOKOBOI Nepefadi 3HadeHb NPUMITUBHOIO TUNy Ta o0’ekTiB String.

= [IpoTe BMKOPUCTOBYBATM Lii Krnacu anga nepegadi He-String 06’ekTiB HEMOXINUBO.

= 3amicTb LibOro BUKOPUCTOBYIOTL Cepianisadito Ta Aecepianisauito 06’ekTy, L1006
nepegasaTu 00’€KTU OOBINbHOIO TUMY.

= Cepianizayisi 06'ekmy (Object serialization) — mexaHiam BM ans
NepeTBOPEHHS cTaHy 0b’ekTa B NOTIK 6anTiB.

= Ob6epHeHa onepaLlis Ha3nBaeTbCs Aecepianisauieto.

= CTaH 00’eKTy CKnadaeTbeca 3 Norie ek3emnnspy, Ski 3depiraloTe 3Ha4YEHHS
NPUMITUBHUX TUNIB Ta/abo NocunaHHs Ha iHLWi 00’eKTMW.

= Konu 00’ekT cepianisoBaHo, 00’€KTH, WO € YaCTMHaMM NOTO CTaHy, TakoX cepianisyoTbcs
(SKLLO LbOoMY He 3anobirae po3pobHUK) i T.A4.

= Java nigtpumye
= cepianisauito Ta gecepianisauito 3a 3aMOBYYBaHHAM,
= custom serialization and deserialization,
= externalization.

Cepianisauis Ta gecepianisauis 3a 3aMoBYyBaHHAM

= Xoya Java BMKOHYE BinbLUicTb pobOTU, AEKiNbKa 3agay Mae nponucaTt po3pobHUK:

= [loTpiBHO, Wob Knac, o6’eKkT sIKOro cepianiayetbcsl, peani3oByBaB iHTepdenc java.io.Serializable
interface (Hanpsimy abo Big cynepknacy).

= The rationale for implementing Serializable is to avoid unlimited serialization.

= Serializable — nopoXxHin mapkepHun iHTepdenc (MeToaiB ans peanisauii He
nepenbadeHo), kM Knac pearniaye, wWob nosigomutn BM, wo it's okay to serialize the
class’s objects.

= Konn mexaHi3m cepianidadil encounters o0’ekT, yMin Knac He peanisye Serializable, BUkngaeTbcs
ek3emnnap knacy java.io.NotSerializableException (Henpsamun nigknac IOException).

HeobmexeHa cepianizauis (Unlimited serialization)

= Lle npouec cepianisauii Bcboro rpady ob’ekta (object graph).

= Java He nigTpumye HeobmexxeHy cepianisauito, ToMy LLO:

= be3neka: Akbu Java aBToMaTnU4HO cepiasnidyBana ob’eKT, WO MICTUB sensitive
information (naponb, HOMEP KPeanTKX TOLLO), XaKkepy 3arnpocTo Mir OTpuMaTi Lo
iHdbopmauito and wreak havoc. Kpawe gatm po3podHuky Bubip, WoO yHMKaTU Takux
CcuUTyauin.

= [IpodykmueHicmb: cepianiszauia Bukopuctosye Reflection API, Wo CnoBinbHIOE
poboTy goaoatky. HeobmexeHa cepianisauig MoXe CyTTEBO BMSIMHYTU Ha
NPOOYKTUBHICTb AoAaTKy.

= O6’ekmu, siki He ni0darombcs cepianizayil. nesaki 06’eKTU iICHYIOTb TifIbKM B
KOHTEKCTIi 3anyLeHoro goaarky, i ix cepianisauia 6esrnysga. Hanpuknag, o6’ekr
dpannoBoro NOTOKY AaHUX, AKUK Oecepiani3yeTbes, binblue He NpeacTaBnse
NigKNoYeHHA 4o danny.

Implementing Serializable

import java.io.Serializable;

public class Employee implements Serializable

{

private String name;
private int age;

public Employee(String name, int age)
{

this.name = name;
this.age = age;

}

public String getName() { return name; }

public int getAge() { return age; }

= JlictuHr oronowye knac Employee, wo

peanisye iHTepdenc Serializable.
= He 6yae BuknHyto NotSerializableException.

= He nuwe Employee peanisye Serializable, knac
String — Tex.

Your second task is to work with the
ObjectOutputStream class and its
writeObject() method to serialize an object
and the OutputinputStream class and its
readObject() method to deserialize the
object.

Note Although ObjectOutputStream extends
OuéputStream instead of FilterOutputStream,
an

although ObjectinputStream extends
InputStream instead of FilterInputStream,
these classes

behave as filter streams.

= Java provides the concrete ObjectOutputStream class to initiate the
serialization of an object’s state to an object output stream.

» This class declares an ObjectOutputStream(OutputStream out)

constructor that chains the object output stream to the output stream specified by
Out.

= When you pass an output stream reference to out, this constructor attempts to
write a serialization

header to that output stream.

= |t throws NullPointerException when out is null and IOException when an I/O error
prevents it from writing this header.

» ObjectOutputStream serializes an object via its void writeObject(Object
obj) method.

= This method attempts to write information about obj's class followed by the values
of obj’s instance fields to the underlying output stream.

writeObject() doesn'’t serialize the contents of static fields.

In contrast, it serializes the contents of all instance fields that are not
explicitly prefixed with the transient reserved word. For example, consider
the following field declaration:

public transient char[] password;

» This declaration specifies transient to avoid serializing a password for some hacker to
encounter.

. ;I'he \(irtq[al machine’s serialization mechanism ignores any instance field that's marked
ransient.

Note Check out my “Transience” blog post _
(www.javaworld.com/community/node/13451) to learn more about transient.

writeObjecti throws IOException or an instance of an IOException subclass
when something goes wrong.

= For example, this method throws NotSerializableException when it encounters an object
whose class doesn’t implement Serializable.

Note Because ObjectOutputStream implements DataOutput, it also
declares methods for writing primitive-type values and strings to an object
output stream.

= Java provides the concrete ObjectinputStream class to initiate the
deserialization of an ob{ect’s state from an object input stream. This class
declares an ObjectinputStream(InputStream in) constructor that chains the
object input stream to the input stream specified by in.

= When you pass an input stream reference to in, this constructor attempts to read a
serialization header from that input stream.

= |t throws NullPointerException when in is null, IOException when an I/O error prevents it
from reading this header, and java.io.StreamCorruptedException (an indirect subclass of
IOException) when the stream header is incorrect.

: Objt%cténputStream deserializes an object via its Object readObiject()
method.

» This method attempts to read information about obj's class followed by the values of obj’s
instance fields from the underlying input stream.

= readObject() throws java.lang.ClassNotFoundException, IOException, or an instance of an
IOEXxception subclass when something goes wrong.

= For example, this method throws java.io.OptionalDataException when it encounters
primitive-type values instead of objects.

= Note Because ObjectinputStream implements Datalnput, it also declares

n%ethods for reading primitive-type values and strings from an object input
stream.

import java.io.FileInputStream;
import java.io.FileQOutputStream;
import java.io.IOException;

import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;

public class SerializationDemo

{

final static String FILENAME = "employee.dat";

public static void main(String[] args)

{

ObjectOutputStream oos = null;
ObjectInputStream ois = null;
try

{

Serializing and
Deserializing an Employee

Object

FileOutputStream fos = new FileOutputStream(FILENAME);

0os = new ObjectOutputStream(fos);

Employee emp = new Employee("John Doe", 36);

oos.writeObject(emp);
oos.close();
oos = null;

FileInputStream fis = new FileInputStream(FILENAME);

ois = new ObjectInputStream(fis);

Listing 11-19 presents an
application that uses these
classes to serialize and
deserialize an instance of
Listing 11-18’s Employee
class to and from an
employee.dat file.

Listing 11-19’s main()
method first instantiates
Employee and serializes
this instance via

emp = (Employee) ois.readObject(); // (Employee) cast is necessary. ertEObJECt() to

ois.close();
System.out.println(emp.getName());
System.out.println(emp.getAge());

}
catch (ClassNotFoundException cnfe)

{
}

System.err.println(cnfe.getMessage());

employée.dat.

It then deserializes this
iInstance from this file via
readObject() and invokes
the instance’s getName()
and getAge() methods.

}

catch (IOException ioe)
{

}
finally

{

System.err.println(ioe.getMessage());

if (oos != null)
try
{

oos.close();

}
catch (IOException ioe)

{
}

if (ois != null)
try
{

ois.close();
}
catch (IOException ioe)

{
}

assert false; // shouldn't happen in this context

assert false; // shouldn't happen in this context

}
}

Along with employee.dat, you’ll discover

the following output when you run this
application:

John Doe

36

= There’s no guarantee that the

same class will exist when a
serialized object is deserialized
(perhaps

an instance field has been
deleted).

During deserialization, this
mechanism causes readObject()
to throw

java.io.InvalidClassException—an

Indirect subclass of the
|IOEXxception class—when it
detects a difference between the
deserialized object and its class.

= Every serialized object has an identifier.

= The deserialization mechanism compares the identifier of the object being
deserialized with the serialized identifier of its class (all serializable classes are
automatically given unique identifiers unless they explicitly specify their own
id_entifierﬁ) and causes InvalidClassException to be thrown when it detects a
mismatch.

= Perhaps you've added an instance field to a class, and you want the
deserialization mechanism to set the instance field to a default value rather than
have readObject() throw an InvalidClassException instance.

= (The next time you serialize the object, the new field’s value will be written out.)

= You can avoid the thrown InvalidClassException instance by adding
a static final long serialVersionUID = long integer value; declaration
to the class.

= The long integer value must be unique and is known as a stream unique
identifier (SUID).

= During deserialization, the virtual machine will compare the deserialized object’'s SUID
to its class’s SUID. If they match, readObject() will not throw InvalidClassException
when it encounters acompatible class change (such as adding an instance field).

= However, it will still throw this exception when it encounters an incompatible class change (such as
changing an instance field’s name or type).

= Note Whenever you change a class in some fashion, you must calculate a new SUID
and assign it to serialVersionUID.

The serialver user interface reveals Employee’s SUID

» The JDK provides a serialver tool for calculating the SUID. For example, to
generate an SUID for
Listing 11-18’s Employee class, change to the directory containing
Employee.class and execute the
following command:
serialver Employee
In response, serialver generates the following output, which you paste (except
for Employee:) into
Employee.java:
Employee: static final long serialVersionUID = 1517331364702470316L,;
The Windows version of serialver also provides a graphical user interface that
you might find more
convenient to use. To access this interface, specify the following command line:
serialver -show
When the serialver window appears, enter Employee into the Full Class Name
text field and click the Show button.

' —_————— : r -

Full Class Name: |[Employee

Serial Version:| staticfinal long serialVersionUID = 1517331364702470316L;

Custom Serialization and Deserialization

= My previous discussion focused on default serialization and deserialization (with the
exception of
marking an instance field transient to prevent it from being included during
serialization). However,
situations arise where you need to customize these tasks.
For example, suppose you want to serialize instances of a class that doesn’t
Implement
Serializable. As a workaround, you subclass this other class, have the subclass
Implement
Serializable, and forward subclass constructor calls to the superclass.
Although this workaround lets you serialize subclass objects, you cannot deserialize
these serialized
objects when the superclass doesn’t declare a noargument constructor, which is
required by the
deserialization mechanism. Listing 11-20 demonstrates this problem.

import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.ObjectInputStream;

import java.io.ObjectOutputStream; P O b I em a_tl C

import java.io.Serializable;

Deserlalization

class Employee

{

private String name;

Employee(String name)
{

}

this.name = name;

@0verride
public String toString()

{
}

return name;

}

class SerEmployee extends Employee implements Serializable

{
SerEmployee(String name)

{
}

super (name) ;

}

public class SerializationDemo

{

public static void main(String[] args)
{
ObjectOutputStream cos = null;
ObjectInputStream ois = null;

try

{
oos = new ObjectOutputStream(new FileOutputStream("employee.dat"));
SerEmployee se = new SerEmployee("John Doe");
System.out.println(se);
oos.writeObject(se);
oos.close();
005 = null;
System.out.println("se object written to file");
ois = new ObjectInputStream(new FileInputStream("employee.dat"));

se = (SerEmployee) ois.readObject(); catch (IOException ioe)

System.out.println("se object read from file"); {
System.out.println(se); ioe.printStackTrace();
}
catch (ClassNotFoundException cnfe) iinally
{ {
cnfe.printStackTrace(); if (oos != null)
} try
. LIStIngll-ZO,S malnﬁ) methOd oos.close();
instantiates SerEmployee with an } e (oxcention :
employee name. This class’s gaten (10Exception 1oe)
SerEmployee(String) constructor assert false; // shouldn't happen in this context
passes this argument to its Employee i dote 1o
counterpart. try
{
= main() next calls Employee’s , Cisrclose0s
toString() method indirectly via catch (IOException ioe)
SyStemOUtprlntIn() to Obtaln thIS { assert false; // shouldn't happen in this context
name, which is then output. } ’
}
}

3 C_:ont_inuin%;, ma_in(z serializes the SerEmployee instance to an employee.dat
file via writeObject().

» |t then attempts to deserialize this object via readObject(), and this is where
the trouble occurs, as revealed by the following output:

John Doe
se object written to file
java.io.InvalidClassException: SerEmployee; no valid constructor
at java.io.ObjectStreamClass$ExceptionInfo.newInvalidClassException(Unknown Source)
at java.io.ObjectStreamClass.checkDeserialize(Unknown Source)
at java.io.ObjectInputStream.readOrdinaryObject(Unknown Source)
at java.io.ObjectInputStream.readObjecto(Unknown Source)
at java.io.ObjectInputStream.readObject(Unknown Source)
at SerializationDemo.main(SerializationDemo.java:48)

= This output reveals a thrown instance of the InvalidClassException class.

= This exception object was thrown during deserialization because Employee doesn't
pOosSsess a hoargument constructor.

You can overcome this problem by taking advantage of the wrapper class
pattern (Chapter 4).

» Furthermore, you declare a pair of private methods in the subclass that the serialization
and deserialization mechanisms look for and call.

Normally, the serialization mechanism writes out a class’s instance fields
to the underlying output stream.

= However, you can prevent this from happening by declaring a private void
writeObject(ObjectOutputStream 00s) method in that class.

When the serialization mechanism discovers this method, it calls the
method instead of automatically outputting instance field values.

= The only values that are output are those explicitly output via the method.

Conversely, the deserialization mechanism assigns values to a class’s
Instance fields that it reads from the underlying input stream.

= However, you can prevent this from happening by declaring a private void
readObject(ObjectinputStream ois) method.

= \When the deserialization mechanism discovers this method, it calls the method instead
of automatically assigning values to instance fields.

= The only values that are assigned to instance fields are those explicitly assigned via the method.

» Because SerEmployee doesn’t introduce any fields, and because Employee doesn’t offer access to its

internal fields (assume you don’t have the source code for this class), what would a serialized
SerEmployee object include?

= Although you cannot serialize Employee’s internal state, you can serialize the
argument(s) passed to its constructors, such as the employee name.

= Listing 11-21 reveals the refactored SerEmployee and SerializationDemo classes.

import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;

import java.io.ObjectInputStream; SOIVIng PrObIematIC
import java.io.ObjectOutputStream; . . .
e 1MpOTT java.io.Serializable; _DES_ELI_&I_I_ZBTIOI’]

=]

class Employee class SerEmployee implements Serializable

{ {
private String name; private Employee emp;

private String name;
Employee(String name)

{ SerEmployee(String name)
this.name = name; {
} this.name = name;
emp = new Employee(name);
@0verride }
public String toString()
{ private void writeObject(ObjectOutputStream oos) throws IOException
return name; {
} 00s.writeUTF(name);
} }

private void readObject(ObjectInputStream ois)
throws ClassNotFoundException, IOException

{
name = ois.readUTF();
emp = new Employee(name);
}
@0verride
public String toString()
{
return name;
}

public class SerializationDemo

{
public static void main(String[] args)
{
ObjectOutputStream oos = null;
ObjectInputStream ois = null;
try

{
oos = new ObjectOutputStream(new FileOutputStream("employee.dat"));
SerkEmployee se = new SerEmployee("John Doe");
System.out.println(se);
oos.writeObject(se);
oos.close();
oos = null;
System.out.println("se object written to file");
0is = new ObjectInputStream(new FileInputStream("employee.dat"));

= (SerEmployee) ois.readObject(); catch (T0Exception ioe)

System.out.println("se object read from file"); {
} System.out.println(se); ioe.printStackTrace();
1
catch (ClassNotFoundException cnfe) finally
{ {
cnfe.printStackTrace(); if (oos != null)
} try
= SerEmployee’s wrlteObject() and " gos.close();
readODbject() methods rely on b
DataOutput and Datalnput methods: eeh (10fxception doe)
m the don’t need to call ObJeCtOutputStream S assert false; // shouldn't happen in this context
writeObject %metho and ny
ObjectinputStream’s readObject() method to if (ofs 1= null)
perform heir tasks. {IY
ois.close();
n Pe3yj'|b'| John Doe }
se object written to file Eatch (I0Exception ioe)
;Ehﬁhgigt read from file assert false; // shouldn't happen in this context
}
1
}

= The writeObject() and readObject() methods can be used to
serialize/deserialize data items beyond the normal state (non-transient
Instance fields), for example, serializing/deserializing the
contents of a static field.

= However, before serializing or deserializing the additional data items,
you must tell the serialization and deserialization mechanisms to
serialize or deserialize the object’'s normal state.

» The following methods help you accomplish this task:

= [J ObjectOutputStream’s defaultWriteObject() method outputs the object’s normal
state. Your writeObject() method first calls this method to output that state and then
outputs additional data items via ObjectOutputStream methods such as writeUTF().

= ObjectinputStream’s defaultReadObject() method inputs the object’s normal state.
Your readObject() method first calls this method to input that state and then inputs
additional data items via ObjectinputStream methods such as readUTF().

Externalization

= Along with default serialization/deserialization and custom serialization/
deserialization, Java supports externalization.

» Unlike default/custom serialization/deserialization, externalization offers complete control over
the serialization and deserialization tasks.

= Note Externalization helps you improve the performance of the reflection-based
serialization and deserialization mechanisms by giving you complete control over
what fields are serialized and deserialized.

= Java supports externalization via java.io.Externalizable. This interface declares the
following pair of public methods:

= [J void writeExternal(ObjectOutput out) saves the calling object’s contents by calling various
methods on the out object. This method throws IOException when an 1/O error occurs.
ga\(a.lo.ObjectOutput is a subinterface of DataOutput and is implemented by

bjectOutputStream.)

= [] void readExternal(Objectinput in) restores the calling object’s contents by calling various
methods on the in object. This method throws IOException when an I/O erfor occurs and
ClassNotFoundException when the class of the object being restored cannot be found.
(java.io.Objectinput is a subinterface of Datalnput and is implemented by ObjectinputStream.)

» |f a class implements Externalizable, its writeExternal() method is responsible for
saving all field values that are to be saved.

= Also, its readExternal() method is responsible for restoring all saved field values and in the order
they were saved.

import java.io.Externalizable;
import java.io.IOException;

import java.io.ObjectInput;
import java.io.ObjectOutput;

public class Employee implements Externalizable

{

}

Refactoring Listing 11-
18’s Employee Class to

private String name;

private int age;
public Employee()

{
System.out.println("Employee() called");

}

public Employee(String name, int age)
{

this.name = name;

this.age = age;

}

public String getName() { return name; }
public int getAge() { return age; }

@0verride
public void writeExternal(ObjectOutput out) throws IOException
{
System.out.println("writeExternal() called");
out.writeUTF(name);
out.writeInt(age);

}

@0verride
public void readExternal(ObjectInput in)
throws IOException, ClassNotFoundException
{
System.out.println("readExternal() called");
name = in.readUTF();
age = in.readInt();

}

Support Externalization

= Employee declares a public

Employee() constructor because
each class that participates in
externalization must declare a
public noargument constructor.
The deserialization mechanism
calls

this constructor to instantiate the
object.

Caution The deserialization
mechanism throws
InvalidClassException with a “no
valid constructor”

message when it doesn’t detect
a public noargument constructor.

Initiate externalization by instantiating ObjectOutputStream and calling its
writeObject(Object) method, or by instantiating ObjectinputStream and calling its
readObject() method.

Note When passing an object whose class (directly/indirectly) implements Externalizable to
writeODbj ect() the writeObject()-initiated serialization mechanism writes only the identity of
the object s class to the object output stream.

Suppose you compiled Listing 11-19’s SerializationDemo.java source code and Listing 11-
22’s Employee.java source code in the same directory.

Now suppose you executed java SerializationDemo. In response, you would observe the
following output:

writeExternal() called

Employee() called

readExternal() called

John Doe

36

» Before serializing an object, the serialization mechanism checks the object’s class to see if
it
iImplements Externalizable. If so, the mechanism calls writeExternal(). Otherwise, it looks
for a
private writeObject(ObjectOutputStream) method and calls this method when present.
When this
method isn’t present, this mechanism performs default serialization, which includes only
nontransient instance fields.
Before deserializing an object, the deserialization mechanism checks the object’s class to
see if it
implements Externalizable. If so, the mechanism attempts to instantiate the class via the
public
noargument constructor. Assuming success, it calls readExternal(). _
When the object’s class doesn’t implement Externalizable, the deserialization mechanism
looks for
a private readObject(ObjectinputStream) method. When this method isn’t present, this
mechanism _
performs default deserialization, which includes only non-transient instance fields.

PrintStream

= Of all the stream classes, PrintStream is an oddball: it should have been named
PrintOutputStream o _ _
for consistency with the naming convention. This filter output stream class writes string
representations of input data items to the underlying output stream.
Note PrintStream uses the default character encoding to convert a string’s characters to
bytes.
(I'll discuss character encodings when | introduce you to writers and readers in the next
section.) Because
PrintStream doesn’t support different character encodings, you should use the equivalent
PrintWriter
class instead of PrintStream. However, you need to know about PrintStream because of
Standard 1/0 _ _ _
(see Chapter 1 for an introduction to this topic). _ _ _
PrintStream instances are print streams whose various print() and printin() methods print
string
representations of integers, floating-point values, and other data items to the underlying
output
stream. Unlike the print() methods, printin() methods append a line terminator to their
output.

= Note Th? line terminator (also known as line separator) isn’t necessarily the newline (also
common
referred t)c/) as line feed). Instead, to promote portability, the line separator is the sequence
of characters _ _
defined by system property line.separator. On Windows platforms,

System.get ropertyg'llne _ o _

.separator"”) returns the actual carriage return code (13), which is symbolically represented

r’ . . : . .
fo%lowed bty the actual newline/line feed code (10), which is symbolically represented by \n.

In contras
Sygtem.getProperty("Iine.separator") returns only the actual newline/line feed code on Unix
an

Linux platforms. _ _ _ _

g;]he printin() methods call their corresponding print() methods followed by the equivalent of
e

void printin() method, which eventually results in Iine.se?arator’s value being output. For

tehxample, void printin(int x) outputs x’s string representation and calls this method to output
e

line separator.

= Caution Never hard-code the \n escape sequence in a string literal that you are going to
output via a
print() or printin() method. Doing so isn’t portable. For example, when Java executes
System.out.
print("first line\n"); followed by System.out.printin("second line");, you will see first
line on one line followed by second line on a subsequent line when this output is viewed at
the Windows
command line. In contrast, you’ll see first linesecond line when this output is viewed in the
Windows
Notepad application (which requires a carriage return/line feed sequence to terminate
lines). When you need
to Ol#_tpgt a blank line, the easiest way to do this is to call System.out.printIn();, which is why
you fin
this method call used elsewhere in my book. | confess that | don’t always follow my own
advice, so you might
find instances of \n in literal strings being passed to System.out.print() or
System.out.printin()
elsewhere in this book.

» PrintStream offers three other features that you’ll find useful:
1 Unlike other output streams, a print stream never rethrows an IOException
Instance thrown from the underlying output stream. Instead, exceptional
situations set an internal flag that can be tested by calling PrintStream’s boolean
checkError() method, which returns true to indicate a problem.
] PrintStream objects can be created to automatically flush their output to the
underlying output stream. In other words, the flush() method is automatically
called after a byte array is written, one of the printin() methods is called, or a
newline is written.
[PrintStream declares a PrintStream format(String format, Object ...args)
method for achieving formatted output. Behind the scene, this method works
with the Formatter class that | introduce in Chapter 13. PrintStream also
declares a printf(String format, Object... args) convenience method that
delegates to the format() method. For example, invoking printf() via out.printf(format,
args) is identical to invoking out.format(format, args).

Standard I/O Revisited

= In Chapter 1, | introduced you to Standard 1/O. | stated that you input data items from

the standard

iInput stream by making System.in.read() method calls, that you output data items to
the standard

ohutput stream by making System.out.print() and System.out.printin() method calls, and
that

you output data items to the standard error stream by making System.err.print() and
System.err.

printin() method calls. Finally, | discussed I/O redirection.

System.in, System.out, and System.err are formally described by the following class
fields in the

System class:

1 public static final InputStream in

1 public static final PrintStream out

] public static final PrintStream err

These fields contain references to InputStream and PrintStream objects that represent
the standard

Input, standard output, and standard error streams.

When you invoke System.in.read(), the input is originating from the source
identified by the InputStream instance assigned to in.

. Similarlk{, when you invoke S%stem.out.print() or System.err.printin(), the output is being sent to
the destination identified by the PrintStream instance assigned to out or err, respectively.

Tip On an Android device, you can view content sent to standard output and
standard error by first exec_utlng adb logcat at the command line. adb is one of the
tools included in"'the Android SDK.

Java initializes in to refer to the keyboard or a file when the standard input stream is
redirected to the file. Similarly, Java initializes out/err to refer to the screen or a file
when the standard output/error stream is redirected to the file.

You can programmatically specify the input source, output destination, and error
destination by calling the following System class methods:

» void setin(InputStream in)
» void setOut(PrintStream out)
» void setErr(PrintStream err)

Listing 11-23 presents an application that shows you how to use these methods to
8ro ,rar?_matlcally redirect the standard input, standard output, and standard error
estinations.

Programmatically Specifying the Standard Input Source and
Standard Output/Error Destinations

import java.io.FileInputStream;
import java.io.IOException;
import java.io.PrintStream;

public class RedirectIO

{

public static void main(String[] args) throws IOException

{

if (args.length != 3)

{
System.err.println("usage: java RedirectIO stdinfile
return;

}

System.setIn(new FileInputStream(args[0]));
System.setOut(new PrintStream(args[1]));
System.setErr(new PrintStream(args[2]));

int ch;
while ((ch = System.in.read()) != -1)
System.out.print((char) ch);

System.err.println("Redirected error output");

Listing 11-23 presents a RedirectlO application that
lets you specify (via command-line arguments)

the name of a file from which System.in.read()
obtains its content as well as the names of files to
which System.out.print() and System.err.printin()
send their content. It then proceeds to copy
standard input to standard output and then
demonstrates outputting content to standard error.

stdoutfile stderrfile");

= Next, new FilelnputStream(args[0]) provides access to the input sequence of bytes
that is stored
In the file identified by args[0]. Similarly, new PrintStream(args[1]) provides access to
the file
identified by args[1], which will store the output sequence of bytes, and new
PrintStream(args[2])
provides access to the file identified by args[2], which will store the error sequence of
bytes.

= Compile Listing 11-23 (javac RedirectlO.java). Then execute the following command
line:
java RedirectlO RedirectlO.java out.txt err.txt
This command line produces no visual output on the screen. Instead, it copies the
contents of
RedirectlO.java to out.txt. It also stores Redirected error output in err.txt.

WORKING WITH WRITERS AND
READERS

» Java’s stream classes are good for streaming sequences of bytes, but they’'re not good
for streaming sequences of characters because bytes and characters are two different
things: a byte represents an
8-bit data item and a character represents a 16-bit data item.

= Also, Java’s char and String types naturally handle characters instead of bytes.

= More importantly, byte streams have no knowledge of character sets (sets of mappings between
integer values, known as code points, and symbols, such as Unicode) and their character encodings
(mappings between the members of a character set and sequences of bytes that encode these
characters for efficiency, such as UTF-8).

= |If you need to stream characters, you should take advantage of Java’s writer and

reader classes, which were designed to support character I/O (they work with char
Instead of byte).

» Furthermore, the writer and reader classes take character encodings into account.

A BRIEF HISTORY OF CHARACTER SETS AND
CHARACTER ENCODINGS

» Early computers and Programmin languages were created mainly by English-speaking
programmers in countries where English was the native language.

» They developed a standard mapping between code points 0 through 127 and the 128 commonly
used characters in the English language (such as A-2).

» The resulting character set/encoding was named American Standard Code for Information
Interchange (ASCII).

» The problem with ASCII is that it's inadequate for most non-English languages. For example, ASCII
doesn’t support diacritical marks such as the cedilla used in French. Because a byte can represent a
maximum of 256 different characters, develogers around the world started creating differen
character sets/encodings that encoded the 128 ASCII characters, but also encoded extra characters
to meet the needs of Iang}_uages such as French, Greek, and Russian. Over the years, many legacy
(and still important) data files have been created whose bytes represent characters defined by
specific character sets/encodings.

» The International Organization for Standardization (ISO) and the International Electrotechnical
Commission (IEC) worked to standardize these 8-bit character sets/encodings under a joint
umbrella standard called ISO/IEC 8859. The result is a series of substandards named ISO/IEC
8859-1, ISO/IEC 8859-2, and so on. For example, ISO/IEC 8859-1 (also known as Latin-1)
defines a character set/encoding that consists of ASCII plus the characters covering most.
Western European countries. Also, ISO/IEC 8859-2 (also known as Latin-2) defines a similar
character set/encoding covering Central and Eastern European countries.

A BRIEF HISTORY OF CHARACTER SETS
AND CHARACTER ENCODINGS

= Despite the ISO’s/IEC’s best efforts, a plethora of character sets/encodings
s still inadequate.

= For example, most character sets/encodings only allow you to create documents in a
combination of English and one other language zlor a small number of other languages).

= You cannot, for example, use an ISO/IEC character set/encoding to create a document
using a combination of English, French, Turkish, Russian, and Greek characters.

= This and other problems are being addressed by an international effort
tr;]at haés crea%ted and is continuing to develop Unicode, a single universal
character set.

= Because Unicode characters are bigger than ISO/IEC characters, Unicode uses one of
several variablelength encoding schemes known as Unicode Transformation Format
(UTF) to encode Unicode characters for efficiency. For example, UTF-8 encodes every
cht%r%cst%r”l)n the Unicode character set in one to four bytes (and is backward-compatible
wi :

= Finally, the terms character set and character encoding are often used
Interchangeably.

» They mean the same thing in the context of ISO/IEC character sets in which a code point
is the encoding.

= However, these terms are different in the context of Unicode in which Unicode is the
cRaracEer set and UTF-8 is one of several possible character encodings for Unicode
characters.

hierarchy of writer classes

BufferedWriter

CharArrayWriter

FilterWriter (abstract)

Writer (abstract) OutputStream Writer FileWriter

PipedWriter

PrintWriter

StringWriter

= Unlike java.io.FilterOutputStream, FilterWriter is abstract

hierarchy of reader classes

BufferedR eader

LineNumberReader

CharArrayReader

Reader (abstract)

FilterReader (abstract)

PushbackReader

InputStreamReader

FileReader

PipedReader

StringReader

= Unlike java.io.FilterinputStream, FilterReader is abstract

= Although the writer and reader class hierarchies are similar to their
output stream and input stream counterparts, there are differences.

= For example, FilterWriter and FilterReader are abstract, whereas their
FilterOutputStream and FilterInputStream equivalents are not abstract.

= Also, BufferedWriter and BufferedReader don'’t extend FilterWriter and FilterReader,
whereas java.io.BufferedOutputStream and
java.io.BufferedinputStream extend FilterOutputStream and FilterinputStream.

»= The output stream and input stream classes were introduced in Java
1.0.
= After their release, design issues emerged.
= For example, FilterOutputStream and FilterinputStream should have been abstract.

= However, it was too late to make these changes because the classes were already
being used; making these changes would have resulted in broken code.

» The designers of Java 1.1’s writer and reader classes took the time to correct these
mistakes

Regarding BufferedWriter and BufferedReader directly subclassing
Writer and Reader instead of FilterWriter and FilterReader, | believe that
this change has to do with performance.

Calls to BufferedOutputStream’s write() methods and
BufferedIinputStream’s read() methods result in calls to
FilterOutputStream’s write() methods and FilterinputStream’s read()
methods.

Because a file I/O activity such as copying one file to another
caninvolve many write()/read() method calls, you want the best
performance possible.

By not subclassing FilterWriter and FilterReader, BufferedWriter and
BufferedReader achieve better performance.

Writer and Reader

= Java provides the Writer and Reader classes for performing character 1/0O.

Writer is the superclass of all writer subclasses.

* The following list identifies the differences between Writer and
Java.io.OQutputStream:

Writer declares several append() methods for appending characters to this writer. These
methods exist because Writer implements the java.lang.Appendable interface, which is
used in partnership with the java.util. Formatter class to output formatted strings.

Writer declares additional write() methods, including a
convenient void write(String str?1 method for writing
a String object’s characters to this writer.

» Reader is the superclass of all reader subclasses. The following list
identifies differences between Reader and java.io.InputStream:

Reader declares rea_d(charm and read(char], int, int) methods instead of read(byte[])
and read(byte[], int, int) methods.

Reader doesn’t declare an available() method.

Reader declares a boolean ready() method that returns true when the next read() call is
guaranteed not to block for input.

Reader declares an int read(CharBuffer target) method for reading characters from a
character buffer.

OutputStreamWriter and InputStreamReader

= The concrete OutputStreamWriter class (a Writer subclass) is a bridge
between an incoming sequence of characters and an outgoing stream
of bytes.

= Characters written to this writer are encoded into bytes according to
the default or specified character encoding.

= Note The default character encoding is accessible via the
file.encoding system property.

= Each call to one of OutputStreamWriter’s write() methods causes an
encoder to be called on the given character(s).

» The resulting bytes are accumulated in a buffer before being written to
the underlying output stream.

= The characters passed to the write() methods are not buffered.

= QutputStreamWriter declares four constructors, including the
following pair:

= QutputStreamWriter(OutputStream out) creates a bridge between an incoming
sequence of characters (passed to OutputStreamWriter via its append() and
write() methods) and the underlying output stream out. The default character
encoding is used to encode characters into bytes.

= QutputStreamWriter(OutputStream out, String charsetName) creates a bridge
between an incoming sequence of characters (passed to OutputStreamWriter via
its append() and write() methods) and the underlying output stream ouit.
charsetName identifies the character
encoding used to encode characters into bytes. This constructor throws
java.io.UnsupportedEncodingException when the named character encoding isn’t
supported.

= Note OutputStreamWriter depends on the abstract
java.nio.charset.Charset and java.nio.charset.CharsetEncoder
classes to perform character encoding.

The following example uses the second constructor to create a bridge to an underlying
file output stream so that Polish text can be written to an ISO/IEC 8859-2-encoded file.

FileOutputStream fos = new FileOutputStream("polish.txt");
OutputStreamWriter osw = new OutputStreamWriter(fos, "8859 2");
char ch ='\u0323"; // Accented N.

osw.write(ch);

The concrete InputStreamReader class (a Reader subclass) is a bridge
between an incoming stream of bytes and an outgoing sequence of
characters. Characters read from this reader are decoded from bytes
according to the default or specified character encoding.

Each call to one of InputStreamReader’s read() methods may cause one or more
bytes to be read from the underlying input stream. To enable the efficient conversion of
bytes to characters, more bytes may be read ahead from the underlying stream than
are necessary to satisfy the current read operation

» |nputStreamReader declares four constructors, including the following
pair:
» |nputStreamReader(InputStream in) creates a bridge between the underlying input
stream in and an outgoing sequence of characters (returned from

InputStreamReader via its read() methods). The default character encoding is used
to decode bytes into characters.

» |nputStreamReader(InputStream in, String charsetName) creates a bridge between
the underlying input stream in and an outgoing sequence of characters (returned
from InputStreamReader via its read() methods). charsetName identifies the
character encoding
used to decode bytes into characters. This constructor throws
UnsupportedEncodingException when the named character encoding is not
supported.

*= Note InputStreamReader depends on the abstract Charset and
java.nio.charset.CharsetDecoder classes to perform
character decoding.

» The following example uses the second constructor to create a bridge to
an underlying file input stream so that Polish text can be read from an
ISO/IEC

8859-2-encoded file.
FileInputStream fis = new FilelnputStream("polish.txt");
InputStreamReader isr = new InputStreamReader(fis, "8859 2");
char ch = isr.read(ch);

= Note OutputStreamWriter and InputStreamReader declare a String

getEncoding() method that returns the name of the character encoding
In use.

= |f the encoding has a historical name, that name is returned; otherwise, the
encoding’s canonical name is returned.

FileWriter and FileReader

= FileWriter is a convenience class for writing characters to files. It
subclasses OutputStreamWriter, and its constructors, such as
FileWriter(String path),
call OutputStreamWriter(OutputStream).

* An instance of this class is equivalent to the following code fragment:
FileOutputStream fos = new FileOutputStream(path);
OutputStreamWriter osw;
osw = new OutputStreamWriter(fos, System.getProperty(“file.encoding"));

» FileReader is a convenience class for reading characters from files.
It subclasses InputStreamReader, and its constructors, such as
FileReader(String path), call InputStreamReader(InputStream).

= An instance of this class is equivalent to the following code fragment:
FilelnputStream fis = new FilelnputStream(path);
InputStreamReader isr;
Isr = new InputStreamReader(fis, System.getProperty("file.encoding"));

= Neither FileWriter nor FileReader supply their own methods. Instead, you
call their inherited methods, such as the following:
1 void write(String str, int off, int len): Write len
characters of string str starting at zero-based offset
off. Throw java.io.lOException when an 1/O error
OCcCurs.
1 int read(char[] cbuf, int off, int len): Read len
characters into cbuf starting at zero-based offset off.
Throw IOException when an I/O error occurs.

Demonstrating the FileWriter and FileReader Classes

import java.io.FileReader;
import java.io.FileWriter;
import java.io.IOException;

public class FWFRDemo
{

final static String MSG = "Test message”;

public static void main(String[] args) throws IOException

{
try (FileWriter fw = new FileWriter("temp"))

{
fw.write(MSG, 0, MSG.length());

}
char[] buf = new char[MSG.length()];
try (FileReader fr = new FileReader("temp"))
{
fr.read(buf, 0, MSG.length());
System.out.println(buf);

}
}
}

FWFRDemo first creates a FileWriter instance connected to a file named temp.

It then invokes void write(String str, int off, int len) to write a message to this file. The
try-with-resources statement automatically closes the file following this operation.

Next, FWFRDemo creates a buffer for storing a line of text, and then creates a
FileReader instance connected to temp. It then invokes int read(char[] cbuf, int off, int
len) to read the previously written message and output

it to the standard output stream. The file is then closed.

You should observe the following output (and a file named temp):
Test message

BufferedWriter and BufferedReader

= BufferedWriter writes text to a character-output stream (a Writer instance), buffering characters so as
to provide for the efficient writing of single characters, arrays, and strings. Invoke either of the
following constructors to construct a buifered writer:
(1 BufferedWriter(Writer out)
1 BufferedWriter(Writer out, int size) _ _
The buffer size may be specified, or the default size (8,192 bytes) may be accepted. The default is
large enough for most purposes.

= BufferedWriter includes a handy void newLine() method for writing a line-separator string, which
effectively terminates the current line.

» BufferedReader reads text from a character-input stream (a Reader instance),
buffering characters so as to provide for the efticient reading of characters,
arrays, and lines. Invoke either of the following constructors to construct a
bufféred reader: _

(1 BufferedReader(Reader in)
[BufferedReader(Reader in, int size)

= The buffer size may be specified, or the default size (8,192 bytes) may be
used. The default is large enough for most purposes. _
BufferedReader includes a handy String readLine() method for reading a
line of text, not including any line-termination characters.

public class BWBRDemo

{

static String[] lines =

{
"It was the best of times, it was the worst of times,",
"it was the age of wisdom, it was the age of foolishness,”,
"it was the epoch of belief, it was the epoch of incredulity,”,
"it was the season of Light, it was the season of Darkness,”,
"it was the spring of hope, it was the winter of despair.”

I

public static void main(String[] args) throws IOException

{
try (BufferedWriter bw = new BufferedWriter(new FileWriter("temp")))

{

for (String line: lines)

{
bw.write(line, 0, line.length());

bw.newLine();
}
}
try (BufferedReader br = new BufferedReader(new FileReader("temp")))
{

String line;
while ((line = br.readlLine()) != null)
System.out.println(line);

= BWBRDemo first creates a BufferedWriter instance that wraps a
created FileWriter instance that is connected to a file named temp. It
then iterates over the line of strings, writing each line followed by a
newline sequence.

= Next, BWBRDemo creates a BufferedReader instance that wraps a
created FileReader instance that is connected to temp. It then reads
and outputs each line from the file until readLine() returns null.

It was the best of times, it was the worst of times,

it was the age of wisdom, it was the age of foolishness,

it was the epoch of belief, it was the epoch of incredulity,
it was the season of Light, it was the season of Darkness,
it was the spring of hope, it was the winter of despair.

